3 research outputs found

    Implementation of Bus Rapid Transit in Copenhagen: A Mesoscopic Model Approach

    Get PDF
    Bus Rapid Transit (BRT) has shown to be an efficient and cost-effective mode of public transport, and has gained popularity in many cities around the world. To optimise the operations and infrastructure it is advantageous to deploy transport models. However, microscopic models are very inefficient for large scale corridors due to the vast amount of data and resources required. Hence, it is relevant to investigate how to model and evaluate BRT efficiently. In this paper the effects of implementing BRT in Copenhagen is discussed including how to evaluate and model bus operations. For this purpose, a mesoscopic simulation model is developed. In the model bus operations are modelled on a microscopic level whereas the interactions with other traffic are modelled macroscopically. This makes it possible to model high-frequency bus services such as BRT lines in more details without the time consumption of micro-simulation models. The developed model is capable of modelling bus operations in terms of travel time and reliability including important mode-specific issues such as bus bunching. The model is applied to a BRT project proposal with different combinations of BRT elements. The model results show that infrastructure upgrades (busways and enhanced stations) ensure a reduction to travel time whereas no improvements to reliability occur. Upgrades to technology and service planning (pre-paid fare collection, boarding and alighting from all doors, special BRT vehicles, ITS, and active bus control) ensure an increase in service reliability whereas only small reductions to travel time are observed. By combining all BRT elements it is possible to obtain synergies where the improved reliability due to planning and technology elements makes it possible to utilise the infrastructure optimally. Hence, it is possible to increase commercial speed from 14.8 to 19.9 km/h and service reliability in terms of headway time regularity from 46% to 84% aggregated on both directions for the morning peak period making the implementation of BRT feasible from a pure financial point of view

    Analysing improvements to on-street public transport systems: a mesoscopic model approach

    Get PDF
    Light rail transit and bus rapid transit have shown to be efficient and cost-effective in improving public transport systems in cities around the world. As these systems comprise various elements, which can be tailored to any given setting, e.g. pre-board fare-collection, holding strategies and other advanced public transport systems (APTS), the attractiveness of such systems depends heavily on their implementation. In the early planning stage it is advantageous to deploy simple and transparent models to evaluate possible ways of implementation. For this purpose, the present study develops a mesoscopic model which makes it possible to evaluate public transport operations in details, including dwell times, intelligent traffic signal timings and holding strategies while modelling impacts from other traffic using statistical distributional data thereby ensuring simplicity in use and fast computational times. This makes it appropriate for analysing the impacts of improvements to public transport operations, individually or in combination, in early planning stages. The paper presents a joint measure of reliability for such evaluations based on passengers’ perceived travel time by considering headway time regularity and running time variability, i.e. taking into account waiting time and in-vehicle time. The approach was applied on a case study by assessing the effects of implementing segregated infrastructure and APTS elements, individually and in combination. The results showed that the reliability of on-street public transport operations mainly depends on APTS elements, and especially holding strategies, whereas pure infrastructure improvements induced travel time reductions. The results further suggested that synergy effects can be obtained by planning on-street public transport coherently in terms of reduced travel times and increased reliability
    corecore